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Array-enhanced coherence resonance and forced dynamics in coupled FitzHugh-Nagumo
neurons with noise

Yuji Shinohara,1 Takashi Kanamaru,2 Hideyuki Suzuki,1 Takehiko Horita,1 and Kazuyuki Aihara1,3

1Department of Mathematical Engineering and Information Physics, Graduate School of Engineering, The University of Toky
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan

2Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japa
3CREST, Japan Science and Technology Corporation (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan

~Received 13 August 2001; revised manuscript received 22 January 2002; published 6 May 2002!

Nonlinear dynamics of coupled FitzHugh-Nagumo neurons subject to independent noise is analyzed. A kind
of self-sustained global oscillation with almost synchronous firing is generated by array-enhanced coherence
resonance. Further, forced dynamics of the self-sustained global oscillation stimulated by sinusoidal input is
analyzed and classified as synchronized, quasiperiodic, and chaotic responses just like the forced oscillations in
nerve membranes observed byin vitro experiments with squid giant axons. Possible physiological importance
of such forced oscillations is also discussed.
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I. INTRODUCTION

Neurons are fundamental elements constituting the
logical brain. Information processing in the brain is believ
to be supported by nonlinear dynamics of such neurons@1#.
The nonlinear dynamics of neurons has been studied
experimentally and theoretically as a main topic in neu
science@1,2#. In particular, squid giant axons and the ma
ematical model of the Hodgkin-Huxley equations have be
greatly contributing to such research on nonlinear neuro
namics@3#.

Well-controlledin vitro experiments with squid giant ax
ons and corresponding theoretical analysis with the Hodg
Huxley equations have clarified existence of rich nonlin
phenomena in nerve membranes like a self-sustained os
tion with repetitive firing of action potentials and the Ho
bifurcation @4–6#. Moreover, as a simple case of interacti
among such neural oscillators, forced oscillations of a s
sustained neural oscillator stimulated by periodic input s
as sinusoidal and pulse-train currents have been intens
analyzed and classified as synchronized, quasiperiodic,
chaotic oscillations@7–9#. Figures 1~a!–1~c! show examples
of a self-sustained oscillation with repetitive firing of actio
potentials, a 1/1-synchronized oscillation where one ac
potential is generated during each period of a sinuso
force periodically, and a chaotic oscillation in squid gia
axons. Here, the forced oscillations of Figs. 1~b! and 1~c! are
observed by stimulating a self-sustained oscillator of F
1~a! with a sinusoidal current whose amplitude and f
quency are changed as the bifurcation parameters@7–9#. In
particular, existence of chaotic oscillations in squid giant
ons like the one in Fig. 1~c! has been confirmed by examin
ing the geometric structure of reconstructed attractors@10# as
well as by calculating the indices of chaos such as
Lyapunov exponent@11# and deterministic predictability
@12,13#. Further, neural oscillations have been also p
much attention as a possible mechanism of the function
the brain, like binding distributed pieces of information, a
though careful discussion on, e.g., relation between s
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chrony and oscillations are indispensable@14#.
When we consider nonlinear oscillations as neuronal c

relates that actually play functional roles in the brain, the
exist two problems that should be carefully examine
namely,~1! realization of neural oscillators by cortical neu
rons whose dynamics is excitable rather than oscillatory
~2! effects of ubiquitous background noise to cortical ne
rons that operate in such a noisy environment.

Effects of noise on nonlinear dynamics, such as noi
induced order@15# and stochastic resonance@16# have been
one of the important topics in nonlinear science. Amo
these studies, coherence resonance~CR! and similar dynam-
ics @17–27# are closely related to the two problems rais
above. In particular, array-enhanced coherence reson
provides a possible mechanism that coupled excitable n
rons subject to independent external noise and operate
synchronized self-sustained oscillators generating alm
regular firing of action potentials@26,27#. Moreover, interest-
ing nonlinear phenomena, such as synchronization of in
acting coherence resonance oscillators@28# and global forced
activities of coupled noisy excitable systems@29# have been
also analyzed.

In this paper, time series data of interspike intervals
coupled noisy excitable systems of the FitzHugh-Nagu
neurons @30,31# are analyzed with nonlinear time serie
analysis that had been effective to elucidate nonlinear
namics of squid giant axons directly from electrophysiolo
cal data@12,13#.

II. ARRAY-ENHANCED COHERENCE RESONANCE
IN COUPLED FITZHUGH-NAGUMO NEURONS

Based on the models in Refs.@20,25,27#, coupled
FitzHugh-Nagumo neurons in aM3N lattice is represented
as follows:

e ẋi j 5xi j 2
xi j

3

3
2yi j 1j i j ~ t !1g~xi 11,j1xi 21,j1xi , j 11

1xi , j 2124xi j !, ~1!
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ẏi j 5xi j 1a ~ i 51,2, . . . ,M , j 51,2, . . . ,N!, ~2!

wheree,g, anda are parameters and the periodic bound
condition such thatxM11,j5x1,j , x21,j5xM , j , xi ,N115xi ,1 ,
andxi ,215xi ,N is employed. We sete50.01 anda51.05 to
keep every neuron excitable so that the resting state
asymptotically stable, if without any external inputs. T
noise termsj i j (t) are independent Gaussian white noise w
intensity D, i.e., ^j i j (t)jkl(t8)&52Dd ikd j l d(t2t8). The
coupling among the elements is local and diffusive w
strengthg. Different from the neuron models in previou
studies on CR@20,23,27#, the noise terms are incorporated

FIG. 1. Examples of electrophysiological results with squid
ant axons.~a! A self-sustained oscillation with repetitive firing o
action potentials,~b! a 1/1-synchronized forced oscillation, and~c!
a chaotic forced oscillation. In each figure, the upper and lo
wave forms show the stimulating current and the membrane po
tial, respectively. Giant axon of squid~Doryteuthis bleekeri! were
used in the experiment. The self-sustained oscillation in~a! was
induced by bating the axon in a mixture of natural sea water
550-mM NaCl@6#. The forced oscillations in~b! and~c! were pro-
duced by stimulating the self-sustained neural oscillator with si
soidal currents through an internally platinized platinum wire el
trode @8#.
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y
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Eq. ~1! rather than Eq.~2! to explore effects of backgroun
current noise to the variablex that corresponds to the mem
brane potential of a neuron.

Let the sequencet0
( i j ),t1

( i j ),t2
( i j ),•••,tKi j

( i j ) denote the

series of firing times ofxi j . From the sequence of$tk
( i j )%, the

interspike intervals are defined asTk
( i j )5tk

( i j )2tk21
( i j ) (k

51,2, . . . ,Ki j ). To characterize the coherence of the outp
spike train, the coherence measureR is defined as follows
@20,27#:

R5
^Tk

( i j )&

A^~Tk
( i j )!2&2^Tk

( i j )&2
, ~3!

where

^~Tk
( i j )!n&5

(
i 51

M

(
j 51

N

(
k51

Ki j

~Tk
( i j )!n

(
i 51

M

(
j 51

N

Ki j

. ~4!

In short,R is the ratio of the average and the standard dev
tion of the interspike intervals and is a kind of signal-t
noise ratio in the sense that periodicity with repetitive firi
at fixed intervals is a signal. It should be noted thatR is the
reciprocal of the coefficient of variation in a point proce
that is widely used in the field of neuroscience@1,32,33#.

We have numerically calculatedR as a function ofg and
D for the two-dimensional square lattice withM5N and the
one-dimensional lattice withM51. The features of the de
pendence ofR on g and D are almost the same as tho
reported in Ref.@27# where the setup of the system is diffe
ent from that of the present paper in the following meanin
the slow variabley is perturbed by the noise, the parametea
of each element is randomly distributed over an interval, a
the lattice is one dimensional@27#. The system of Eqs.~1!
and~2! exhibitsarray-enhancedCR @27#, i.e., there exists an
optimal pair of noise intensity and coupling strength, both
the two-dimensional square lattice and in the on
dimensional lattice. By the numerical experiment, as sho
in Fig. 2, we have found that the maximum valueR* of R at

-

r
n-

d

-
-

FIG. 2. System size dependence of the maximumR* of R for
the one-dimensional and two-dimensional lattices. Saturation of
growth of R* is observed in large system sizes.
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FIG. 3. A sequence of activity
patterns$xi j % at time intervals of
0.1 around synchronous firing fo
the two-dimensional lattice with
N5M550, D5631025, and g
50.08. The whiter regions corre
spond to high values ofx showing
firing.
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the optimalD andg increases with the system size and sa
rates aroundR̄;40 andR̄;26 for the two-dimensional and
one-dimensional lattices, respectively. It is also observed
the optimal noise intensity and the optimal coupling stren
converge to constants, which is contrasted with the cas
array-enhanced stochastic resonance where the optimal
intensity and the optimal coupling strength satisfy scal
relations with the system size@34#. The saturation of the
value ofR with increasing the system size is phenomenolo
cally understood by observing a sequence of activity pat
of a large system at the optimal pair of noise intensity a
coupling strength. As shown in Fig. 3, several spots of fir
appear first, then they grow into global firing; thus, for ea
element, there is an effective size of system that is relevan
the firing of the element. As a result, the degree of ove
synchronization of firing becomes worse with the increase
the system size@25#. By assuming the existence of the effe
tive system size, it is concluded that the maximum valueR*
of R does not depend on the system size for systems la
than the effective system size. A detailed analysis concern
the existence of the effective system size is left as a fu
work.

We can conclude that the two-dimensional lattice c
achieve more coherence than the one-dimensional
Roughly speaking, this enhancement of CR by the incre
of the dimension of the lattice is considered to be due to
fact that firing of one element can propagate more easil
the other elements and synchronization of the elements t
place more easily with a moderate strength of the coupli

Figure 4 shows a typical time series ofx11 with a high
value of R. Despite the randomness of the noise input
shows nearly periodic oscillation with repetitive firing of a
tion potentials. This coherence resonance oscillation res
from the collective motion of the diffusively coupled neuro
subject to independent noise. In the following section,
perturb this noise-induced coherent oscillation by perio
sinusoidal input, to consider effects of interaction betwe
the two oscillatory modes, namely, a self-sustained osc
tion and an external periodic force.

III. FORCED DYNAMICS OF COHERENCE RESONANCE
OSCILLATORS

Under the condition thatg and D are set so thatR is
nearly maximized, let us periodically perturb the system w
05190
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sinusoidal input@7–9,29#. Then, Eq.~1! is modified to in-
clude the periodic forcing term as follows:

e ẋi j 5xi j 2
xi j

3

3
2yi j 1j i j ~ t !1A sinS 2pt

B D1g~xi 11,j1xi 21,j

1xi , j 111xi , j 2124xi j !. ~5!

In order to observe interaction between the two oscillat
modes, the amplitudeA of the periodic forcing is set at a
relatively large value ofA50.1; whenD50 andM5N51,
namely, in the case of a single neuron, this strength is
prathreshold for 0.2<B<7.1 and subthreshold forB>7.2.
The system size is fixed atM5N510 and the noise intensity
and the strength of coupling are determined asD54.0
31025 and g50.06 so thatR attains its almost maximum
value ;38 at the present system size. Note thatR;38 is
close to the limiting value ofR̄;40 in the large system siz
limit and in this sense the system sizeM5N510 is consid-
ered to be large enough. In the following, the seque
$T1 ,T2 , . . . ,TK% of interspike intervals ofx11 is analyzed.

In Fig. 5, the firing rater[BK/(( i 51
K Ti), i.e., the average

frequency of firing during one period of external forcing
plotted against the periodB of the external force. There ar
plateaus with simple rational values of the firing rates, wh
commonly appear in deterministic two-frequency syste
and indicate synchronized oscillations@35#. As in the deter-

FIG. 4. A time series ofx11 with N5M510, g50.06, andD
54.031025 in a state of a coherence resonance oscillation s
tained by noise and coupling.
6-3
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ministic systems, competition between the two oscillato
modes between two adjacent plateau regions is expecte
generate nontrivial motion. In the deterministic systems,
typical nontrivial motion is a chaotic oscillation@7–9,35#,
while quasiperiodic motion is also typical but trivial.

The left column of Fig. 6 shows plots ofTi 11 againstTi
for several values ofB implying that the system is well re
constructed on theTi-Ti 11 plane @36#. At B53.3 corre-
sponding to the plateau at the firing rater51, the points on
the Ti-Ti 11 plane form one cluster showing a nearly 1/
synchronized oscillation. Similar analysis confirms that ea
plateau of the firing rates in Fig. 5 represents a phase-loc
synchronized motion. Since the system is subject to rand
noise, it should be noted that there is a nonzero probab
that the response is accidentally unlocked, i.e., the point
viates temporarily away from clusters corresponding to a
riodic point on theTi-Ti 11 plane, in the observation over
long time.

At B52.5, 5.0, and 10.0, the phase-unlocked motions
observed; there appear nonlocalized points on theTi-Ti 11
plane and the return plots of phasesw i

52pt i
(11)/B@mod(2p)#. Our interest here is whether th

motions have deterministic instability or not, i.e., wheth
the system inherently generates complex motions accor
to a kind of determinism or not. If the answer is affirmativ
then the motions are considered to be a counterpart of
otic oscillations.

In order to characterize the observed interspike inter
data from the viewpoint of determinism, let us explore t
normalized prediction error~NPE! with the nearest-neighbo
method of prediction@36,37#. With the reconstructing dimen
sion m and delay coordinate vectors of interspike interv
Vj5(Tj 2m11 , . . . ,Tj ), the dynamical behavior is recon
structed inRm. Here we takem53 that seems to be appro
priate as shown in Fig. 6. LetL be the number of state point
in the reconstructed phase spaceRm and, for a fixedj 0, we
choosel 5bL(b,1) points that are nearest to the pointVj 0

in Rm and denote them byVj k
5(Tj k2m11 , . . . ,Tj k

) (k

51,2, . . . ,l ). With $Vj k
% (k51,2, . . . ,l ), a predictor of

Tj 01h for h steps ahead is constructed by the following a
erage@36,37#:

FIG. 5. The relation between the average firing rater and the
periodB of the external forcing.
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pj 0
~h!5

1

l (
k51

l

Tj k1h . ~6!

The NPE is defined by

ENP5
^~pj 0

~h!2Tj 01h!2&1/2

^~^Tj 0
&2Tj 01h!2&1/2

, ~7!

where^•& stands for the average with respect toj 0 over the
observed sequence. If the NPE is much less than 1, it ca
said that the deterministic prediction fits well to the tim
series. The small NPE indicates the existence of determi
tic structure behind the time series data, because this a
rithm is based on the assumption that the dynamical struc
of a finite-dimensional deterministic system can be well
constructed by the delay coordinates of interspike inter
data@36#. In order to confirm the deterministic property, th
values of NPE should be compared with those of NPE fo
set of surrogate data@38#. The surrogate data are new tim
series generated from the original time series under so
null hypothesis so that the new time series preserves s
statistical properties of the original data. Here, we use th
kinds of surrogation, namely, random shuffled~RS!, Fourier
shuffled ~FS!, and amplitude adjusted Fourier transform
~AAFT! surrogate data which, respectively, correspond to
null hypotheses of independent and identically distribu
random process, a linear stochastic process, and a linear
chastic process observed through a monotonic nonlin
function @37,38#.

Figure 7 shows NPE withm53, L53000, andb50.01
as a function of prediction stepsh for each value ofB used in
Fig. 6. For the phase-locked motion with the firing rate of
in Fig. 6~a!, each NPE has a value close to 1. This is due
the fact that for the synchronized motion the interspike int
vals Ti slightly fluctuate around a constant value with sm
and almost independent fluctuation.

In the case withB510.0 where an almost closed curv
and a monotonous and invertible map on the circle
observed in theTi-Ti 11 plane and the return plots of phas
in Fig. 6~b!, respectively, the NPE is small compared wi
those of the surrogate data and almost constant for 1<h
<9 as shown in Fig. 7~b!, suggesting that the motion corre
sponds to a quasiperiodic oscillation in deterministic s
tems. In the cases withB52.5 and 5.0, the NPEs are rela
tively small at h51 and monotonically increase wit
increasingh to values close to 1. The motions are predicta
for h51 and the deterministic predictability is gradually lo
with the increase of the prediction steph. This implies that
the motion has deterministic instability. From the depe
dence of NPE onh, the system withB55.0 is considered to
have stronger instability than the system withB52.5.

Figures 6 and 7 enable us to classify the observed
sponses into three kinds of motions, namely, the synch
nized and phase-locked motion, the phase-unlocked mo
without deterministic instability, and the phase-unlocked m
tion with deterministic instability. Thus, interaction betwee
two kinds of oscillatory modes, one sustained by arra
enhanced CR with the noise and the other of external p
6-4
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FIG. 6. Two-dimensional reconstruction withTi andTi 11 ~left!, return plots on phases~middle!, and wave forms~right! of the variable
x ~lower! and the stimulation~upper! for B5 ~a! 3.3, ~b! 10.0, ~c! 2.5, and~d! 5.0. Here, the phases of the middle column are defined
follows: w i[2pt i

(11)/B@mod(2p)#.
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odic forcing, produces a motion with deterministic instab
ity, which is nontrivial in the following senses: this is neith
the case where an underlying chaotic motion is perturbed
noise nor the case where noise is just nonlinearly ampli
by the dynamics. Indeed atD50 only a synchronized mo
tion with the external forcing is observed forB<7.1 and no
firing is observed forB>7.2. This nontrivial motion may be
called as CR-sustained deterministic chaos where alm
synchronous firing is generated repetitively and chaotic
from forced CR oscillators.

IV. CONCLUSION

Coherence resonance in coupled FitzHugh-Nagumo m
els in lattices is examined and the array-enhanced coher
05190
y
d

st
y

d-
ce

resonance is observed. It is found that higher coherenc
achieved in the two-dimensional lattice compared with
one-dimensional one; the maximum ofR as a function of the
noise intensityD and the strengthg of coupling has larger
values in the two-dimensional lattice than in the on
dimensional one. The periodic perturbation of the cohere
resonance oscillation with highR generates three kinds o
motions, namely, the phase-locked synchronized motion,
phase-unlocked motion without deterministic instability, a
the phase-unlocked motion with deterministic instabili
which correspond to a synchronized oscillation, a quasip
odic oscillation, and a chaotic oscillation in the determinis
systems@7,9,35#, respectively. It is remarked that the phas
unlocked motion with deterministic instability is nontrivia
and a counterpart of deterministic chaos.
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FIG. 7. The relation between
NPE and prediction stepsh for B
5 ~a! 3.3, ~b! 10.0, ~c! 2.5, and
~d! 5.0. The solid lines show NPE
of the original data.
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In conclusion, an assembly of the excitable neuron m
els subject to independent noise cooperatively generat
highly coherent oscillation with repetitive and almost sy
chronous firing of action potentials by array-enhanced coh
ence resonance@27#. Periodic forcing, which can be realize
by interaction between two such assemblies with arr
enhanced coherence resonance, can generate such rich
responses as synchronous, quasiperiodic, and chaotic
just like the forced oscillations in nerve membranes obser
by well-controlledin vitro experiments with squid giant ax
g

,

Un

J.

s.
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05190
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ons @7–9#. This result implies that neural oscillators who
existence has been assumed in theoretical models of m
dynamical neural networks and physiologically confirmed
in vitro experiments as shown in Fig. 1, are not necessa
specific to such theoretical and experimentally we
controlled situations but biologically plausible because su
oscillators can be self-organized by coupled neurons, wh
dynamics is excitable rather than oscillatory and subjec
background noise similar to the cortical neurons in the b
logical brain.
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