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Nonlinear dynamics of coupled FitzHugh-Nagumo neurons subject to independent noise is analyzed. A kind
of self-sustained global oscillation with almost synchronous firing is generated by array-enhanced coherence
resonance. Further, forced dynamics of the self-sustained global oscillation stimulated by sinusoidal input is
analyzed and classified as synchronized, quasiperiodic, and chaotic responses just like the forced oscillations in
nerve membranes observed ibyvitro experiments with squid giant axons. Possible physiological importance
of such forced oscillations is also discussed.
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I. INTRODUCTION chrony and oscillations are indispensapld].
When we consider nonlinear oscillations as neuronal cor-
Neurons are fundamental elements constituting the biorelates that actually play functional roles in the brain, there
logical brain. Information processing in the brain is believedexist two problems that should be carefully examined;
to be supported by nonlinear dynamics of such neuféhs namely,(1) realization of neural oscillators by cortical neu-
The nonlinear dynamics of neurons has been studied botfPns whose dynamics is excitable rather than oscillatory and
experimentally and theoretically as a main topic in neuro{2) effects of ubiq_uitous backg_round .noise to cortical neu-
science[1,2]. In particular, squid giant axons and the math-"ons that operate in such a noisy environment.

ematical model of the Hodgkin-Huxley equations have been Effects of noise on nonrl1ine§1r dynamics, SﬁCh as noise-
greatly contributing to such research on nonlinear neurody'-nduced ordg{lS] and stochastic resqnan{:la6]_ ave been
namics[3]. one of the important topics in nonlinear science. Among

Well-controlledin vitro experiments with squid giant ax- these studies, coherence resona(@e) and similar dynam-

ons and corresponding theoretical analysis with the Hod kini—CS [17-27 are closely related to the two problems raised
P 9 y 9K hove. In particular, array-enhanced coherence resonance

Hrl]JxIey equa_tlons have cl?)nﬂed e|>l<|lstence|fof n;:h nc()jnlmef'?\lr rovides a possible mechanism that coupled excitable neu-
phenomena in nerve membranes like a sell-sustained oscillgg g subject to independent external noise and operate like

tion with repetitive firing of action potentials and the Hopf gy nchronized self-sustained oscillators generating almost
bifurcation[4—6]. Moreover, as a simple case of interaction reqyar firing of action potential26,27. Moreover, interest-
among such neural oscillators, forced oscillations of a selfjng nonlinear phenomena, such as synchronization of inter-
sustained neural oscillator stimulated by periodic input suchcting coherence resonance oscillaf@@] and global forced

as sinusoidal and pulse-train currents have been intensivelctivities of coupled noisy excitable systef@9] have been
analyzed and classified as synchronized, quasiperiodic, anflso analyzed.

chaotic oscillationg7-9]. Figures 1a)-1(c) show examples In this paper, time series data of interspike intervals in
of a self-sustained oscillation with repetitive firing of action coupled noisy excitable systems of the FitzHugh-Nagumo
potentials, a 1/1-synchronized oscillation where one actiomeurons[30,31 are analyzed with nonlinear time series
potential is generated during each period of a sinusoidahnalysis that had been effective to elucidate nonlinear dy-
force periodically, and a chaotic oscillation in squid giantnamics of squid giant axons directly from electrophysiologi-
axons. Here, the forced oscillations of Figéh)land Ic) are  cal data[12,13.

observed by stimulating a self-sustained oscillator of Fig.

1(a) with a sinusoidal current whose amplitude and fre- || ARRAY-ENHANCED COHERENCE RESONANCE

quency are c_hanged as the _bifurcgtio_n pa_ramétl_a#g]._ In IN COUPLED FITZHUGH-NAGUMO NEURONS
particular, existence of chaotic oscillations in squid giant ax-

ons like the one in Fig. (t) has been confirmed by examin-  Based on the models in Refg§20,25,27, coupled
ing the geometric structure of reconstructed attradtbd@pas  FitzHugh-Nagumo neurons inM X N lattice is represented
well as by calculating the indices of chaos such as thes follows:
Lyapunov exponenf11l] and deterministic predictability

[12,13. Further, neural oscillations have been also paid i
much attention as a possible mechanism of the functions in  €Xij =Xij = 2~ ~Yij ¥ & (D +9(Xi 2, Xi—1j+Xi 41
the brain, like binding distributed pieces of information, al-

though careful discussion on, e.g., relation between syn- +Xi j-1—4Xij), D

3
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Eq. (1) rather than Eq(2) to explore effects of background
current noise to the variabbethat corresponds to the mem-
brane potential of a neuron. )

Let the sequencef)<t{<tf)<...<t{)) denote the

J
series of firing times ok;; . From the sequence ({)f(”)} the
interspike intervals are defined ag{’=t{")—t{") (k

=1,2,...Kjj). To characterize the coherence of the output
spike train, the coherence measids defined as follows
[20,27:
: (i)
| 'I!‘llll I l” K _ () @
V(T —(TD)?
AU A
A where
. . . L M N Kj
FIG. 1. Examples of electrophysiological results with squid gi- E 2 2 Tiyn
ant axons.(a) A self-sustained oscillation with repetitive firing of - =SS E (Tk
action potentials(b) a 1/1-synchronized forced oscillation, a(a) ((Tﬁ"))”): N (4)
a chaotic forced oscillation. In each figure, the upper and lower E 2

wave forms show the stimulating current and the membrane poten-
tial, respectively. Giant axon of squidoryteuthis bleekeyiwere
used in the experiment The self-sustained OSCi”atiOﬂja)nWaS In Short R is the ratio of the average and the standard devia-
induced by bating the axon in a mixture of natural sea water andign of the interspike intervals and is a kind of signal-to-
550-mM NaCl[6]. The forced oscillations ifib) and (c) were pro-  noise ratio in the sense that periodicity with repetitive firing
duced by stimulating the self-sustained neural oscillator with smuat fixed intervals is a signal. It should be noted tRds the
soidal currents through an internally platinized platinum wire elec- “reciprocal of the coefficient of variation in a point process
trode[8]. that is widely used in the field of neuroscier{de32,33.
We have numerically calculateRl as a function ofy and
yij =xj+a (i=12,...M,j=12,...N), 2 D for 'ghe twe-dimens_ional_square lattice with=N and the
one-dimensional lattice witt=1. The features of the de-
pendence oR on g and D are almost the same as those
wheree,g, anda are parameters and the periodic boundaryreported in Ref[27] where the setup of the system is differ-
condition such thaky ; 1;=X1j, X_1;=Xm j» XiN+1=Xi 1, ent from that of the present paper in the following meaning;
andx; _;=X; y is employed. We se¢=0.01 anda=1.05to the slow variable is perturbed by the noise, the parameter
keep every neuron excitable so that the resting state isf each element is randomly distributed over an interval, and
asymptotically stable, if without any external inputs. Thethe lattice is one dimensiong27]. The system of Eqs(1)
noise termsg;;(t) are independent Gaussian white noise withand(2) exhibitsarray-enhancedCR[27], i.e., there exists an
intensity D, i.e., (&;(t)&q(t"))=2D&d;6(t—t"). The  optimal pair of noise intensity and coupling strength, both in
coupling among the elements is local and diffusive withthe two-dimensional square lattice and in the one-
strengthg. Different from the neuron models in previous dimensional lattice. By the numerical experiment, as shown
studies on CR20,23,27, the noise terms are incorporated in in Fig. 2, we have found that the maximum vaReg of R at
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FIG. 3. A sequence of activity
patterns{x;;} at time intervals of
0.1 around synchronous firing for
the two-dimensional lattice with
N=M=50, D=6x10° andg
=0.08. The whiter regions corre-
spond to high values of showing
firing.

the optimalD andg increases with the system size and satu-sinusoidal inpuf7-9,29. Then, Eq.(1) is modified to in-

rates aroundR~40 andR~ 26 for the two-dimensional and clude the periodic forcing term as follows:
one-dimensional lattices, respectively. It is also observed that
the optimal noise intensity and the optimal coupling strength -
converge to constants, which is contrasted with the case of Xii
array-enhanced stochastic resonance where the optimal noise
intensity and the optimal coupling strength satisfy scaling X1t X1 4%)). ®)
relations with the system sizg84]. The saturation of the _ . _
value ofR with increasing the system size is phenomenologin order to observe interaction between the two oscillatory
cally understood by observing a sequence of activity patterfodes, the amplitudé of the periodic forcing is set at a
of a large system at the optimal pair of noise intensity andelatively large value oA=0.1; whenD=0 andM=N=1,
coupling strength. As shown in Fig. 3, several spots of firingh@mely, in the case of a single neuron, this strength is su-
appear first, then they grow into global firing; thus, for eachPrathreshold for 02B=<7.1 and subthreshold fd8=7.2.
element, there is an effective size of system that is relevant thhe system size is fixed 8 =N=10 and the noise intensity
the firing of the element. As a result, the degree of overalpnd the strength of coupling are determined [as-4.0
synchronization of firing becomes worse with the increase of< 10™> and g=0.06 so thaiR attains its almost maximum
the system sizf25]. By assuming the existence of the effec- value ~38 at the present system size. Note tRat38 is
tive system size, it is concluded that the maximum vaklie close to the limiting value oR~40 in the large system size
of R does not depend on the system size for systems largdimit and in this sense the system silve=N=10 is consid-
than the effective system size. A detailed analysis concerningred to be large enough. In the following, the sequence
the existence of the effective system size is left as a futuréT,,T,, ... T} of interspike intervals ok, is analyzed.
work. In Fig. 5, the firing ratepEBK/(EiK:lTi), i.e., the average
We can conclude that the two-dimensional lattice canfrequency of firing during one period of external forcing is
achieve more coherence than the one-dimensional ongjotted against the perioB of the external force. There are
Roughly speaking, this enhancement of CR by the increasglateaus with simple rational values of the firing rates, which
of the dimension of the lattice is considered to be due to theommonly appear in deterministic two-frequency systems

fact that firing of one element can propagate more easily t@nd indicate synchronized oscillatiof85]. As in the deter-
the other elements and synchronization of the elements takes

3

:Xij_ ?—yij+§ij(t)+ASIn —_

FO(X 1T Xi—1

place more easily with a moderate strength of the coupling. 25
Figure 4 shows a typical time series »f; with a high 2t
value of R. Despite the randomness of the noise input, it 15}
shows nearly periodic oscillation with repetitive firing of ac- 11
tion potentials. This coherence resonance oscillation results 05 |
from the collective motion of the diffusively coupled neurons Z Ll
subject to independent noise. In the following section, we J 05|
perturb this noise-induced coherent oscillation by periodic 4 J
sinusoidal input, to consider effects of interaction between 15 //////////////
the two oscillatory modes, namely, a self-sustained oscilla- ol |
tion and an external periodic force.

e l——
50 55 60 65 70 75 80 85 90 95 100
Ill. FORCED DYNAMICS OF COHERENCE RESONANCE t

OSCILLATORS ) ) )
FIG. 4. A time series okq; with N=M =10, g=0.06, andD

Under the condition thag and D are set so thaR is =4.0x107% in a state of a coherence resonance oscillation sus-
nearly maximized, let us periodically perturb the system withtained by noise and coupling.
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05 1 et : where(-) stands for the average with respectj goover the
0 el ) ) , ) observed sequence. If the NPE is much less than 1, it can be
0 2 4 6 8 10 said that the deterministic prediction fits well to the time
B series. The small NPE indicates the existence of determinis-

) N tic structure behind the time series data, because this algo-
FIG. 5. The relation between the average firing ratand the jthm js based on the assumption that the dynamical structure
periodB of the external forcing. of a finite-dimensional deterministic system can be well re-
constructed by the delay coordinates of interspike interval
ministic systems, competition between the two oscillatorydata[36]. In order to confirm the deterministic property, the
modes between two adjacent plateau regions is expected ¥alues of NPE should be compared with those of NPE for a
generate nontrivial motion. In the deterministic systems, theset of surrogate date88]. The surrogate data are new time
typical nontrivial motion is a chaotic oscillatiof¥—9,33, series generated from the original time series under some
while quasiperiodic motion is also typical but trivial. null hypothesis so that the new time series preserves some
The left column of Fig. 6 shows plots df, ; againstT;  statistical properties of the original data. Here, we use three
for several values oB implying that the system is well re- kinds of surrogation, namely, random shufflgiS), Fourier
constructed on thél;-T;,; plane [36]. At B=3.3 corre- shuffled (FS), and amplitude adjusted Fourier transformed
sponding to the plateau at the firing rate- 1, the points on  (AAFT) surrogate data which, respectively, correspond to the
the T,-T;,, plane form one cluster showing a nearly 1/1- null hypotheses of independent and identically distributed
synchronized oscillation. Similar analysis confirms that eacifandom process, a linear stochastic process, and a linear sto-
plateau of the firing rates in Fig. 5 represents a phase-lockeghastic process observed through a monotonic nonlinear
synchronized motion. Since the system is subject to randorfunction[37,38|.
noise, it should be noted that there is a nonzero probability Figure 7 shows NPE witim=3, L=3000, andg=0.01
that the response is accidentally unlocked, i.e., the point deas a function of prediction stejsfor each value oB used in
viates temporarily away from clusters corresponding to a peFig. 6. For the phase-locked motion with the firing rate of 1
riodic point on theT;-T,,, plane, in the observation over a in Fig. 6(@), each NPE has a value close to 1. This is due to
long time. the fact that for the synchronized motion the interspike inter-
At B=2.5, 5.0, and 10.0, the phase-unlocked motions argals T; slightly fluctuate around a constant value with small
observed; there appear nonlocalized points onTth&;.;  and almost independent fluctuation.
plane and the return plots of phasesg; In the case withB=10.0 where an almost closed curve
=2xt™/B[mod(2m)]. Our interest here is whether the and a monotonous and invertible map on the circle are
motions have deterministic instability or not, i.e., whetherobserved in th&;-T;,; plane and the return plots of phases
the system inherently generates complex motions accordiny Fig. 6(b), respectively, the NPE is small compared with
to a kind of determinism or not. If the answer is affirmative, those of the surrogate data and almost constant feh1
then the motions are considered to be a counterpart of cha=9 as shown in Fig. (b), suggesting that the motion corre-
otic oscillations. sponds to a quasiperiodic oscillation in deterministic sys-
In order to characterize the observed interspike intervatems. In the cases witB=2.5 and 5.0, the NPEs are rela-
data from the viewpoint of determinism, let us explore thetively small at h=1 and monotonically increase with
normalized prediction erraiNPE) with the nearest-neighbor increasingh to values close to 1. The motions are predictable
method of predictiofi36,37]. With the reconstructing dimen- for h=1 and the deterministic predictability is gradually lost
sion m and delay coordinate vectors of interspike intervalswith the increase of the prediction stép This implies that
Vi=(Tj-m+1, ---,T;), the dynamical behavior is recon- the motion has deterministic instability. From the depen-
structed inR™. Here we takenm=3 that seems to be appro- dence of NPE oih, the system witlB=5.0 is considered to
priate as shown in Fig. 6. Létbe the number of state points have stronger instability than the system wik-2.5.

in the reconstructed phase spa’® and, for a fixedj, we Figures 6 and 7 enable us to classify the observed re-

choosd = BL(B< 1) points that are nearest to the po‘i[]% sponses into three kinds of motions, namely, the synchro-

in R™ and denote them by =(T; _m:1 T,) (K nized and phase-locked motion, the phase-unlocked motion
k k™ ! )k

B . . . without deterministic instability, and the phase-unlocked mo-
=1.2,...0). With {Vj } _ (k=12,...1), a predlctor of tion with deterministic instability. Thus, interaction between

Tj,+n for h steps ahead is constructed by the following av-ywo kinds of oscillatory modes, one sustained by array-
erage[36,37: enhanced CR with the noise and the other of external peri-
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FIG. 6. Two-dimensional reconstruction with andT;, ; (left), return plots on phasémiddle), and wave formgright) of the variable
x (lower) and the stimulatiorfupped for B= (a) 3.3, (b) 10.0,(c) 2.5, and(d) 5.0. Here, the phases of the middle column are defined as
follows: ¢;=2#7t*Y/B[mod(2n)].

odic forcing, produces a motion with deterministic instabil- resonance is observed. It is found that higher coherence is
ity, which is nontrivial in the following senses: this is neither achieved in the two-dimensional lattice compared with the
the case where an underlying chaotic motion is perturbed bgne-dimensional one; the maximumRfs a function of the
noise nor the case where noise is just nonlinearly amplifiedhoise intensityD and the strengtly of coupling has larger

by the dynamics. Indeed &=0 only a synchronized mo- Values in the two-dimensional lattice than in the one-
tion with the external forcing is observed fBe<7.1 and no ~ dimensional one. The periodic perturbation of the coherence
firing is observed foB=7.2. This nontrivial motion may be Fésonance oscillation with higR generates three kinds of
called as CR-sustained deterministic chaos where almo&potions, namely, the phase-locked synchronized motion, the

synchronous firing is generated repetitively and chaotlcallgph asehunlockeld rll"noélon without dlftzrm'n'St'C |nstab|||tyt,) ?nd
from forced CR oscillators. the phase-unlocked motion with deterministic instability,

which correspond to a synchronized oscillation, a quasiperi-
odic oscillation, and a chaotic oscillation in the deterministic
systemq7,9,35, respectively. It is remarked that the phase-

Coherence resonance in coupled FitzHugh-Nagumo modinlocked motion with deterministic instability is nontrivial
els in lattices is examined and the array-enhanced coherenead a counterpart of deterministic chaos.

IV. CONCLUSION
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In conclusion, an assembly of the excitable neuron modens[7-9]. This result implies that neural oscillators whose
els subject to independent noise cooperatively generatesexistence has been assumed in theoretical models of many
highly coherent oscillation with repetitive and almost syn-dynamical neural networks and physiologically confirmed by
chronous firing of action potentials by array-enhanced coherin vitro experiments as shown in Fig. 1, are not necessarily
ence resonand®7]. Periodic forcing, which can be realized specific to such theoretical and experimentally well-
by interaction between two such assemblies with arrayeontrolled situations but biologically plausible because such
enhanced coherence resonance, can generate such rich forostillators can be self-organized by coupled neurons, whose
responses as synchronous, quasiperiodic, and chaotic oneynamics is excitable rather than oscillatory and subject to
just like the forced oscillations in nerve membranes observetdackground noise similar to the cortical neurons in the bio-
by well-controlledin vitro experiments with squid giant ax- logical brain.
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